
Surface Harmonic Expansions of Products of 
Cartesian Coordinates 

By A. B. Otis, Jr. and M. P. Barnett* 

1. Introduction. Products of Cartesian coordinates must be expressed in terms 
of zonal and tesseral harmonics, and vice versa, in the analysis of physical problems 
of several types. If (x, y, z) are the coordinates of a point, expressed in some Car- 
tesian coordinate system, and (r, 0, q) are the coordinates of the same point ex- 
pressed in the corresponding polar coordinate system, then 

(1) x/r = sin 6 cos 4, y/r = sin 6 sin 4, z/r = cos 6. 

We use Hobson's definition of the associated Legendre functions [1]. 
Any product of non-negative powers of (x/r), (y/r), and (z/r) can be expanded 

as a linear combination of harmonics Pn(cos 0), PFm(cos 0) cos mp and 
Pnm(cos 0) sin m4 in which n and m take appropriate values. This expansion is 
given formally by Equation (2), which defines the coefficients a',,,. We consider 
only non-negative integer values of u, v, w. 

(2) xUyvzw/rutv+w = 
Zaa2'VWP:m(cos 6) co m 
n^,m sin 

In this equation, terms in cos mn are used when v is even, and terms in sin m4 when 
v is odd. The coefficients are zero unless 

(umod2 + vmod2 + wmod2) < n _ u + v + w, 

(3) (umod2 + vmod2) < in ? u + v, 

u+v+w+n even, u-+1v+ineven. 

It is convenient to define an,f to be zero for negative n, in, and for m > n. 
We use the inverse transformation that is given formally by Equation (4). This 

equation, together with the constraint 

u + v = in 

defines the coefficients b722., for 0 _ n_n. 
(4 ) Pnm (cos 0) n m4 = E bnXw (x/r) u(y/r) v (z/r)w. 

sin u v,w 

The coefficients are zero unless 

(n -m,) imiod 2 ? w ? n-m, 0 ? u, v < in 

u + v + w + n even, 
(5) 

v is even when cos imn occurs on the left-hand side of (4), 

v is odd when sin im occurs on the left-hand side of (4). 
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The coefficients in the expansions (2) and (4) are of use in the applications of 
quantum theory to chemical and other problems [2]. Some tables of these coefficients 
have been constructed by a digital computer by use of some simple recurrence 
formulae. The results are expressed as rational fractions. They have been typeset 
photographically from the computer output in a mechanical fashion that avoided 
manual keyboard operations. The tables for 0 < u + v + w < 9 that were pro- 
duced in this way are given in [3]. Excerpts are reproduced here as Tables 1 and 2 of 
this note. The computer programs can be used to generate the coefficients for higher 
values of the indices if necessary. 

2. Recurrence Formulae for a'u:v, Coefficients. The well-known recurrence 
formulae for the Legendre functions can be used to derive recurrence formulae for 
the a'%:',, coefficients. The formula to raise w is obtained by constructing two series 
for (x/r)u(y/r)v(z/r)W+l from the right-hand side of Equation (2) and equating 
terms. To obtain the first series, write w + 1 in place of w. To obtain the second 
series, write n' in place of the summation index n, and multiply the summand by 
cos 0. This gives 

n ~~Cos n1 Cos 
(6) Z auv'+l Pn( (COS ) = cos 6P?, (cos 6) MOn4. 

Replace the product cos OPn' (cos 0) in the summand on the right-hand side of 
Equation (6) by terms in Pmt?1 (cos 0). Substitute n = n' ?4 1 inthe resulting terms 
in Pn?,? (cos 0). Rearrange the summation on the right-hand side so that n is the 
index of summation. Equate coefficients of Pm (cos 0). This gives 

n,m n- m n- m n + m +1 n+1lm 
(7) au-,W+1 = 2n - 1 aulvlw + 2n + 3 

It can be shown that this derivation is valid in the cases that n = 0 and n = m, 
at which times one or other of the terms on the right-hand side of Equation (7) is 
zero in accordance with the convention that is stated after the restrictions (3). 

The formula to raise u is obtained in a similar manner, by constructing two series 
for (x/r)u+l(y/r)v(z/r)w from the right-hand side of Equation (2), and equating 
terms. To obtain the first series, write u + 1 in place of u. To obtain the second 
series, write 'l in place of n, and m' in place of m, and multiply the summand by 
sin 0 cos 4. Use the recurrence formulae for sin 0 Pn' (cos 0), and the elementary 
properties of the circular functions of 4, to replace 

n 
, ~Co 41(os )Cos (m-41 sin OP'/ (cos 0) cos .sin mr nby terms in Pn 1 (cos in) {(m ? 1)4)}. 

The four terms in (n' + 1, m' + 1), (n' - 1, m' + 1), (n' + 1, m'- 1) and 

(n' - 1, mn' - 1) result from this process. Substitute n = n' + 1 in the terms in 

(n' + 1, m' ?t 1). Substitute n = n' - 1 in the terms in (n' - 1, m' ?t 1). Substitute 

m = m' + 1 in the terms in (n' ?4 1, m' + 1). Substitute m = m'- 1 in the terms 

in (n' ?t 1, m' - 1). Rearrange the summation so that n and m are the indices of 
summation. Equate coefficients in 

Pnm (cos 0) .n m. 
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This gives 

n,m 1 +l- n+l,m+l au+,v = 2[(2n + 3){ (1 + 6m,i)a'vmW -(n +m + 1)(n + mr + 2)aU,vw 

(8) 
_ 1 ~~~~n-o-ln1 +11 

(2n - 1) + iml) au 1m-l - (n - m) (n - m - 1)avm}J] 

where 

(9) 1= ; &m,l = 0x m # 1, 

in the Kronecker delta notation. The derivation of the recurrence formula (10) 
that is used to raise the value of v is completely analogous to the derivation of 
Equation (8), with (y/r) playing the part that (x/r) played for (8). 

2 m 1 [(2n + 3) { (1 + &m,i)a,v,w 

(10) + (n + m + 1)(n + m + 2)a+,wm+} (2n 1) I (1 + 6M,l)a7&V,W 

+ (n-rm) (n-rmn- 1)au,,w+}] 

3. Mechanization of Recurrence Procedure. The order in which the au V,W co- 
efficients are constructed conveniently can be described in terms of the index s that 
is defined by 

(11) s = u + v + W. 

In terms of this index, the nonzero aU n2w coefficients can be constructed in the order 
(12) for any positive integer smax . 

s = 0(1)Smax, u = 0(1)s, v = 0(1)s - u, w = s - u - v, 

(12) n = (umod2 + vmod2 + wmod2)(2)s, 

mn = (umod 2 + v mod 2)(2)(u + v). 

The process is started by use of Equation (13) 

(13) a0o0= 1. 

Each a n: coefficient for s ? 1 is computed by Equation (8) if w = v = 0, by 
Equation (10) if w = 0, v # 0, and by Equation (7) if w # 0. 

To mechanize this recurrence scheme, the coefficients must be stored, as they 
are formed, in a way that allows the program to retrieve the a n X coefficient of any 
u, v, w, n, m values which it requires for further use in an application of a recur- 
rence formula. This type of issue arises in the mechanization of any recurrence 
scheme that generates quantities which depend on several indices, and it can be re- 
garded as a mathematical consideration which is as independent of computer models 
and programming languages as the analysis of round off errors or the derivation of 
the recurrence formulae themselves. A formalism to deal with this matter has been 
reported recently [4]. In this formalism, the list of anV,W coefficients arranged in the 
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order (12) is denoted by 
Smax a Vmax l max 

( 14) A A A A A au XS_u_v s=o u=O v=O v=o M=o 

where 

Vmax = [u/2] + [v/2] + [w/2], Mmax = [u/2] + [v/2] 

n = umod2 + vmod2 + wmod2 + 2v, m = umod2 + vmod 2 + 2,u. 

The notation [z] is used here to denote the integer part of z. The use of the symbols 

A and A in (14) is analogous in a sense to the conventional use of symbols such 
as E and fl, in that it allows a running index to enumerate expressions of a com- 
mon form, that are to be considered one by one. The expression A t-i xi denotes 
the list of objects xi1 , x1+, , X2. If the Lj, j = jl to i2, denote lists of objects, 
then AZi. Lj denotes the list that consists of the objects which form the lists 
Ljl Lj1+1 ... Li2, taken in turn. 

It would be possible to express the position of the a2 n:w coefficient of given u, v, 
w, n, m values, in the sequence of a n ,w coefficients that is defined by (12) and (14) 
as a function of u, v, w, n and m. It seemed simpler however to construct an ex- 
pression for the position of an aU n,w coefficient in the sequence of coefficients that is 
defined by (15): 

( 15) S = O(1)Smax, U O(l)s, v = O()s - , 

w = s - u - v, n = O(1)s, mn = O(1)n. 

This sequence of aU n,W coefficients can be written, using the A and A symbols, 
as 

smax s s-X s n 

(16) AIA AVAAa t. 
s-O u=O v=O n=O m=O 

The list of an:,w coefficients contailns zero elements for u, v, w, n, n values that do 
not satisfy the conditions (3). The position (or index) of an a n:w coefficient of 
given u, v, w, m, n values in this list, however, is given by the expression 

s_1 i tu1A 

E {(k + 1)(k + 2)/2}2 + v + E (s + 1-i)} 

X {(s + 1)(s + 2)}/2 + n(n + 1)/2 + m + 1. 

A recurrence scheme that generates the list of a n22" coefficients that is defined 
by (15) and (16) can be mechanized very easily, as a process which by-passes the 
recurrence formulae when the u, v, w, n, mn values make the coefficient zero. This 
scheme uses the expression (17) to find the coefficients in the growing list that arp 
needed in successive applications of the recurrence formulae. The zero entries can 
then be deleted by an editing process that forms the more concise list (14). This 
procedure is used by the author's programis which produced Table 1. 

The construction of expressions such as (17) for elaborate combinations of 
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limits on the A and A symbols in expressions such as (14) are algebraic problems 
rather than programming problems, even though they are of prime concern in the 
design of actual programs. 

4. Recurrence Formulae for the bu22' Coefficients. The recurrence relationships 
for the Legendre functions are used to derive recurrence relationships for the 
bu v:w coefficients in much the same way as for the a"M w coefficients. Thus Equation 
(4) can be used to construct two series for 

?f, Cos 
Pn+l ( cos 0) sin mf. 

One series is obtained by writing n + 1 in place of n, on both sides of Equation (4). 
The other series is obtained by expressing 

Cos 
P?+? (cos 0) .M 

in terms of 

sin 
and 

Pn _1 ( cos 0 ) .MO, sin 

expanding these two latter surface harmonics by Equation (4), writing (z/r) for 
the factor cos 0 that multiplies the harmonic of order n, and relabelling and re- 
arranging the products of Cartesian coordinates that result. Equating coefficients 
of (x/r) (y/r)v(z/r)w gives 

(18) -n+l, 2n + 1 n7n n + m bn-1m 

nlb- m + 1 n-w 
UV 

The corresponding equation that is obtained by expressing 

pmll (cos 0) sin {(m ? 1)+} 

in terms of 

Prn (cos a) cos nf 

and ~~~~~~~~~~sin 
and 

P`22 (cos 0) .s {(m + 1>j} 

is 

(19) bn -- bu V'Wm_ (2/tt + (1) (2n + 1)bu1,V_.W 

A recurrence scheme to construct the b n:,w coefficients can start with the single 
value 

(20) bo = 1. 
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Table i 

a(u,v,w,n,m) coefficients a(u,v ,w,n,rn) coefficients 

u v w n m a u v w n m a 

0 0 0 0 0 1/1 7 2 0 1 1 -1/33 
3 1 14/1,-287 

0 0 1 1 0 1/1 3 3 0 
5 1 -25, 

0 1 0 1 1 -1/1 5 3 () 
5 a 1 /35,1 0( 

1 0 0 1 1 -1/1 7 1 5/7,b293 
7 3 0 

o 0 2 0 0 1/3 7 5 -1l/1,3192,740) 
2 0 2/3 7 7 1/7,351,344) 

9 1 -7/109,395 
0 1 1 2 1 -1/3 9 3 0 

9 5 1/45,945,900 
0 2 0 0 0 1/3 9 7 -1/8812,161,/280 

2 0 -1/3 9 9 1/8,8,21,6P2,8001 
2 2 -1/6 

8 0 1 1 0 1/33 
1 0 1 2 1 -1/3 3 0 -b28/4629 

3 2 14/1,287 
1 1 0 2 2 1/6 5 0 2/39 

5 2 -2Z/585 
2 0 0 0 0 1/3 5 4 l/7,02() 

2 0 -1/3 7 0 -140/7,4293 
2 2 1/6 7 2 5/7,293 

7 4 -1/7-2,93() 
o 0 3 1 0 3/5 7 6 1/2,625,480 

3 0 2/5 9 0 7/2,431 
9 2 -7/109,395 

0 1 2 1 1 -1/5 9 4 1/1,312,740 
3 1 -2/15 9 6 -1/91,891,800 

9 8 1/4,410,806,400 
o 2 1 1 0 1/5 

3 0 -1/5 8 1 0 1 1 -1/33 
3 2 -1/30 3 1 14/1,287 

3 3 -7/1,287 
0 3 0 1 1 -3/5 5 1 --2/585 

3 1 1/10 5 3 1/l2,340 
3 3 1/60 5 5 -1/14,040 

7 1 5/7,293 
1 0 2 1 1 -1/5 7 3 -1/24,310 

3 1 -2/15 7 5 1/5225,096 
7 7 - I1/5,450,96(0 

1 1 1 3 2 1/30 9 1 -7/109,395 
9 3 1/437,580 

1 2 0 1 1 -1/5 9 5 -1/18,378,360 
3 1 1/30 9 7 1/630,115,200 
3 3 1/60 9 9 -1/8,821,612,800 

2 0 1 1 0 1/5 9 0 0 1 1 -3/11 
3 0 -1/5 3 1 14/143 
3 2 1/30 3 3 -7/4~29 

5 1 -2~/65 
2 1 0 1 1 -1/5 5 3 1/780 

3 1 1/30 5 5 -1/7,800 
3 3 -1/60 7 1 15/2,431 

7 3 -3/~24,310 
3 0 0 1 1 -3/5 7 5 1/291,720 

3 1 1/10 7 7 -1/4,084,080 
3 3 -1/60 9 1 -7/12,155 

9 3 1/145,860 
9 5 -1/10,210,200 
9 7 1/490,089,600 
9 9 -1/8,821,612,800 
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Table 2 

b(n,m,u,v,w) coefficients b(n,m,u,v,w) coefficients 

n m u v w b n m u v w b 

0 0 0 0 0 1/1 9 6 0 6 1 2,027,025/2 
0 6 3 -1 1,486,475/2 

1 0 0 0 1 1/1 1 5 1 -6,081,075/1 
1 5 3 34,459,425/1 

1 1 0 1 0 -1/1 2 4 1 -30,405,375/2 
1 0 0 -1/1 2 4 3 172,297,125/2 

3 3 1 20,270,250/1 2 0 0 0 0 -1/2 3 3 3 -114,864,750/1 
0 0 2 3/2 4 2 1 30,405,375/2 

4 2 3 -1 72,297, 125/2 2 1 0 1 1 -3/1 5 1 1 -6,081,075/1 
1 0 1 -3/1 5 1 3 34,459,425/1 

6 0 1 -2,027,025/2 
2 2 0 2 0 -3/1 6 0 3 11,486,475/2 

1 1 0 6/1 
2 0 0 3/1 9 7 0 7 0 -2,027,025/2 

0 7 2 34,459,425/2 
3 0 0 0 1 -3/2 1 6 0 -14,189,175/2 

0 0 3 5/2 1 6 2 241,215,975/2 
2 5 0 42,567,525/2 3 1 0 1 0 3/2 2 5 2 -723,647,925/2 

0 1 2 -15/2 3 4 0 70,945,875/2 
1 0 0 3/2 3 4 2 -1,206,079,875/2 
1 0 2 -15/2 4 3 0 -70,945,875/2 

4 3 2 1,206,079,875/2 3 2 0 2 1 -15/1 5 2 0 -42,567,525/2 
I 1 1 30/1 5 2 2 723,647,925/2 
2 0 1 15/1 6 1 0 14,189,175/;2 

6 1 2 -241,215,975/2 
3 3 0 3 0 15/1 7 0 0 2,0c27,025/2 

1 2 0 45/1 7 0 2 -34,459,425/2 
2 1 0 -45/1 
3 0 0 -15/1 9 8 0 8 1 34,459,425/1 

1 7 1 -275,675,400/1 4 0 0 0 0 3/8 2 6 1 -964,863,900/1 
0 0 2 -15/4 3 5 1 1,929,727,800/1 0 0 4 35/8 4 4 1 2,41e2,19,750/1 

5 3 1 -1,929,727,800/1 4 1 0 1 1 15/2 6 2 1 -964,863,900/1 
0 1 3 -35/2 7 1 1 275,675,400/1 
1 0 1 15/2 8 0 1 34,459,425/1 
1 0 3 -35/2 

9 9 0 9 0 -34,459,425/1 4 2 0 2 0 15/2 1 8 0 -310,134,825/1 
0 2 2 -105/2 e 7 0 1,240,539,300/1 
1 1 0 -15/1 3 6 0 2,894,591,700/1 
1 1 2 105/1 4 5 0 -4,341,887,550/1 
2 0 0 -15/2 5 4 0 -4,341,887,550/1 
2 0 2 105/2 6 3 0 2,894,591,700/1 

7 2 0 1,240,539,300/1 4 3 0 3 1 105/1 8 1 0 -310,134,825/1 1 2 1 315/1 9 0 0 -34,459,425/1 
2 1 1 -315/1 
3 0 1 -105/1 

4 4 0 4 0 105/1 
1 3 0 -420/1 
2 2 0 -630/1 
3 1 0 420/1 
4 0 0 105/1 

................... ................. ..................................... * 
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Equation (18) is used when m = 0 and Equation (19) whenm > 0. The Equations 
(18)-(20) permit the b`% coefficients to be computed in the order 

ln = O(1)nlrnax ; in = O(l)n; u = O(1)in; 

v = In - U; w = (n - in) mod 2(2)(n - m). 

The indexing is simplified by constructing the sequence of b':' coefficielnts (22) 
that contains zero elemlents, and removing these in a subsequent operation 

nrnax n m n-m 

(22) A A A A A buu,1V . 
n==O m= u=O w=O 

The position of the b n:,, coefficient of given n, Mn, u, v, w values in this list is given 
by 

n-1 m-1 

E, f(k + I) (k + 2) (k + 3) /6} + E {n(j + l) _ 2 + 1} 

(23) k==O j==o 
+ u(n - n + 1) + w + 1. 

Table 2 was produced in this way by generating a table of the form (22) and then 
editing out elements that are zero as a consequence of (3). 

5. Checking and Printing Procedures. Two methods were used to check the 
tables that were produced in the manner which has been described in the preceding 
sections. The first method involved the evaluation of the left- and right-hand sides of 
Equations (2) and (4), using values of x, y, z for which the circular functions of 0 
and 4 are rational numbers. 

The second method used the orthogonality of the a's and b's to check both 
tables against each other. If 

(24) c(n, in n in') = Zb'wa n2,?a 
U ,V,W 

where the summation is taken over the u, v, w values that are allowed by (5), and v 
is always even or always odd, then 

(25) c(n, m, n, 'in) = . 

A check program was written to read the output decks of the programs which 
generated the a :m2 and b22, coefficients, and to form the quantities c(n, m, n', i'). 
These were printed and checked visually. 

The tables of au2V, and bivw on punched cards were used as input to the 
TABPRINT program [5]. This produced a punched paper tape that was then used 
to control the operations of a Photon S-560 System, to typeset the tables photo- 
graphically. The printed tables were thus produced from the checked computer 
output without the need for manual keyboard action. 
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